3.130 \(\int x^3 \sin ^{-1}(a x)^n \, dx\)

Optimal. Leaf size=167 \[ -\frac{2^{-n-4} \sin ^{-1}(a x)^n \left (-i \sin ^{-1}(a x)\right )^{-n} \text{Gamma}\left (n+1,-2 i \sin ^{-1}(a x)\right )}{a^4}+\frac{2^{-2 (n+3)} \sin ^{-1}(a x)^n \left (-i \sin ^{-1}(a x)\right )^{-n} \text{Gamma}\left (n+1,-4 i \sin ^{-1}(a x)\right )}{a^4}-\frac{2^{-n-4} \left (i \sin ^{-1}(a x)\right )^{-n} \sin ^{-1}(a x)^n \text{Gamma}\left (n+1,2 i \sin ^{-1}(a x)\right )}{a^4}+\frac{2^{-2 (n+3)} \left (i \sin ^{-1}(a x)\right )^{-n} \sin ^{-1}(a x)^n \text{Gamma}\left (n+1,4 i \sin ^{-1}(a x)\right )}{a^4} \]

[Out]

-((2^(-4 - n)*ArcSin[a*x]^n*Gamma[1 + n, (-2*I)*ArcSin[a*x]])/(a^4*((-I)*ArcSin[a*x])^n)) - (2^(-4 - n)*ArcSin
[a*x]^n*Gamma[1 + n, (2*I)*ArcSin[a*x]])/(a^4*(I*ArcSin[a*x])^n) + (ArcSin[a*x]^n*Gamma[1 + n, (-4*I)*ArcSin[a
*x]])/(2^(2*(3 + n))*a^4*((-I)*ArcSin[a*x])^n) + (ArcSin[a*x]^n*Gamma[1 + n, (4*I)*ArcSin[a*x]])/(2^(2*(3 + n)
)*a^4*(I*ArcSin[a*x])^n)

________________________________________________________________________________________

Rubi [A]  time = 0.176853, antiderivative size = 167, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 4, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4, Rules used = {4635, 4406, 3308, 2181} \[ -\frac{2^{-n-4} \sin ^{-1}(a x)^n \left (-i \sin ^{-1}(a x)\right )^{-n} \text{Gamma}\left (n+1,-2 i \sin ^{-1}(a x)\right )}{a^4}+\frac{2^{-2 (n+3)} \sin ^{-1}(a x)^n \left (-i \sin ^{-1}(a x)\right )^{-n} \text{Gamma}\left (n+1,-4 i \sin ^{-1}(a x)\right )}{a^4}-\frac{2^{-n-4} \left (i \sin ^{-1}(a x)\right )^{-n} \sin ^{-1}(a x)^n \text{Gamma}\left (n+1,2 i \sin ^{-1}(a x)\right )}{a^4}+\frac{2^{-2 (n+3)} \left (i \sin ^{-1}(a x)\right )^{-n} \sin ^{-1}(a x)^n \text{Gamma}\left (n+1,4 i \sin ^{-1}(a x)\right )}{a^4} \]

Antiderivative was successfully verified.

[In]

Int[x^3*ArcSin[a*x]^n,x]

[Out]

-((2^(-4 - n)*ArcSin[a*x]^n*Gamma[1 + n, (-2*I)*ArcSin[a*x]])/(a^4*((-I)*ArcSin[a*x])^n)) - (2^(-4 - n)*ArcSin
[a*x]^n*Gamma[1 + n, (2*I)*ArcSin[a*x]])/(a^4*(I*ArcSin[a*x])^n) + (ArcSin[a*x]^n*Gamma[1 + n, (-4*I)*ArcSin[a
*x]])/(2^(2*(3 + n))*a^4*((-I)*ArcSin[a*x])^n) + (ArcSin[a*x]^n*Gamma[1 + n, (4*I)*ArcSin[a*x]])/(2^(2*(3 + n)
)*a^4*(I*ArcSin[a*x])^n)

Rule 4635

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*S
in[x]^m*Cos[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 3308

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 2181

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> -Simp[(F^(g*(e - (c*f)/d))*(c +
d*x)^FracPart[m]*Gamma[m + 1, (-((f*g*Log[F])/d))*(c + d*x)])/(d*(-((f*g*Log[F])/d))^(IntPart[m] + 1)*(-((f*g*
Log[F]*(c + d*x))/d))^FracPart[m]), x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rubi steps

\begin{align*} \int x^3 \sin ^{-1}(a x)^n \, dx &=\frac{\operatorname{Subst}\left (\int x^n \cos (x) \sin ^3(x) \, dx,x,\sin ^{-1}(a x)\right )}{a^4}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{1}{4} x^n \sin (2 x)-\frac{1}{8} x^n \sin (4 x)\right ) \, dx,x,\sin ^{-1}(a x)\right )}{a^4}\\ &=-\frac{\operatorname{Subst}\left (\int x^n \sin (4 x) \, dx,x,\sin ^{-1}(a x)\right )}{8 a^4}+\frac{\operatorname{Subst}\left (\int x^n \sin (2 x) \, dx,x,\sin ^{-1}(a x)\right )}{4 a^4}\\ &=-\frac{i \operatorname{Subst}\left (\int e^{-4 i x} x^n \, dx,x,\sin ^{-1}(a x)\right )}{16 a^4}+\frac{i \operatorname{Subst}\left (\int e^{4 i x} x^n \, dx,x,\sin ^{-1}(a x)\right )}{16 a^4}+\frac{i \operatorname{Subst}\left (\int e^{-2 i x} x^n \, dx,x,\sin ^{-1}(a x)\right )}{8 a^4}-\frac{i \operatorname{Subst}\left (\int e^{2 i x} x^n \, dx,x,\sin ^{-1}(a x)\right )}{8 a^4}\\ &=-\frac{2^{-4-n} \left (-i \sin ^{-1}(a x)\right )^{-n} \sin ^{-1}(a x)^n \Gamma \left (1+n,-2 i \sin ^{-1}(a x)\right )}{a^4}-\frac{2^{-4-n} \left (i \sin ^{-1}(a x)\right )^{-n} \sin ^{-1}(a x)^n \Gamma \left (1+n,2 i \sin ^{-1}(a x)\right )}{a^4}+\frac{4^{-3-n} \left (-i \sin ^{-1}(a x)\right )^{-n} \sin ^{-1}(a x)^n \Gamma \left (1+n,-4 i \sin ^{-1}(a x)\right )}{a^4}+\frac{4^{-3-n} \left (i \sin ^{-1}(a x)\right )^{-n} \sin ^{-1}(a x)^n \Gamma \left (1+n,4 i \sin ^{-1}(a x)\right )}{a^4}\\ \end{align*}

Mathematica [A]  time = 0.0876354, size = 132, normalized size = 0.79 \[ \frac{4^{-n-3} \sin ^{-1}(a x)^n \left (\sin ^{-1}(a x)^2\right )^{-n} \left (-2^{n+2} \left (-i \sin ^{-1}(a x)\right )^n \text{Gamma}\left (n+1,2 i \sin ^{-1}(a x)\right )+\left (-i \sin ^{-1}(a x)\right )^n \text{Gamma}\left (n+1,4 i \sin ^{-1}(a x)\right )-2^{n+2} \left (i \sin ^{-1}(a x)\right )^n \text{Gamma}\left (n+1,-2 i \sin ^{-1}(a x)\right )+\left (i \sin ^{-1}(a x)\right )^n \text{Gamma}\left (n+1,-4 i \sin ^{-1}(a x)\right )\right )}{a^4} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*ArcSin[a*x]^n,x]

[Out]

(4^(-3 - n)*ArcSin[a*x]^n*(-(2^(2 + n)*(I*ArcSin[a*x])^n*Gamma[1 + n, (-2*I)*ArcSin[a*x]]) - 2^(2 + n)*((-I)*A
rcSin[a*x])^n*Gamma[1 + n, (2*I)*ArcSin[a*x]] + (I*ArcSin[a*x])^n*Gamma[1 + n, (-4*I)*ArcSin[a*x]] + ((-I)*Arc
Sin[a*x])^n*Gamma[1 + n, (4*I)*ArcSin[a*x]]))/(a^4*(ArcSin[a*x]^2)^n)

________________________________________________________________________________________

Maple [F]  time = 0.144, size = 0, normalized size = 0. \begin{align*} \int{x}^{3} \left ( \arcsin \left ( ax \right ) \right ) ^{n}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*arcsin(a*x)^n,x)

[Out]

int(x^3*arcsin(a*x)^n,x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arcsin(a*x)^n,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (x^{3} \arcsin \left (a x\right )^{n}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arcsin(a*x)^n,x, algorithm="fricas")

[Out]

integral(x^3*arcsin(a*x)^n, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{3} \operatorname{asin}^{n}{\left (a x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*asin(a*x)**n,x)

[Out]

Integral(x**3*asin(a*x)**n, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{3} \arcsin \left (a x\right )^{n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arcsin(a*x)^n,x, algorithm="giac")

[Out]

integrate(x^3*arcsin(a*x)^n, x)